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Abstract. Weak-interaction rates play an important role in the birth of neutron stars in core collapse
supernova and their subsequent thermal evolution. In this paper, I highlight the role of strong interactions
and phase transitions in calculations of neutrino scattering and emission rates in dense stellar matter.

PACS. 13.15.+g Neutrino interactions – 13.20.-v Leptonic and semileptonic decays of mesons – 26.50.+x
Nuclear physics aspects of novae, supernovae, and other explosive environments – 26.60.+c Nuclear matter
aspects of neutron stars

1 Introduction

Neutrinos play an important role in stellar evolution. By
virtue of their weak interactions with matter, neutrinos
provide a mechanism for energy loss from the dense stel-
lar interiors. In neutron stars neutrinos are responsible
for most of the energy radiated from the their birth in a
supernova explosion until several thousand years of sub-
sequent evolution. In this paper, we present an overview
of some of the nuclear/particle physics issues that play a
role in understanding the rate of propagation and pro-
duction of neutrinos inside neutron stars. The calcula-
tion of these rates are of current interest since several
research groups are embarking on large-scale numerical
simulations of supernova and neutron star evolution. Even
moderate changes in the nuclear microphysics associated
with the weak-interaction rates at high density can impact
macroscopic features that are observable. An understand-
ing of the response of strongly interacting nuclear medium
to neutrinos and its impact on neutron star evolution,
promises to provide a means to probe the properties of
the dense medium itself.

This paper covers two related topics: i) neutrino inter-
actions in dense matter containing nucleons and leptons
and ii) neutrino interactions in exotic new phases that are
likely to occur in the dense inner core of the neutron star.
We emphasize the generic aspects of the microphysics that
affects the weak-interaction rates and present supporting
qualitative arguments. (For a detailed account see ref. [1].)
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2 Neutrino interactions in nucleonic matter

It was realized over a decade ago that the effects due
to degeneracy and strong interactions significantly alter
the neutrino mean free paths and neutrino emissivities
in dense matter [2–5]; it is only recently that detailed
calculations have become available [6–16]. The scattering
and absorption reactions that contribute to the neutrino
opacity are

νe +B → e− +B′ , ν̄e +B → e+ +B′ ,
νX +B → νX +B′ , νX + e− → νX + e− ,

where the scattering reactions are common to all neutrino
species and the dominant source of opacity for the
electron neutrinos is due to the charged reaction. The
important neutrino-producing reactions in the neutron
star context are

e− + p → n+ νe , n → e− + p+ ν̄e ,

n+ n → n+ p+ e− + ν̄e , n+ n → n+ n+ νX + ν̄X

The weak-interaction rates in hot and dense matter
are modified due to many in-medium effects. The most
important of these are:

1) Composition: The rate for neutrino processes depend
sensitively on the composition which is sensitive to the
nature of strong interactions. First, the different degen-
eracies of the different fermions determine the single-
pair response due to Pauli blocking. For example, a
larger symmetry energy favors higher proton fractions.
This directly impacts the weak rates since the Sec-
ond neutrinos couple differently to different baryonic
species; consequently, the net rates will depend on the
individual concentrations.
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2) In-medium dispersion relations: At high density, the
single-particle spectra are significantly modified from
their non-interacting forms due to effects of strong
interactions. Interacting matter features smaller ef-
fective baryon masses and energy shifts relative to
non-interacting matter. This in turn affects the weak-
interaction rates primarily because it modifies the den-
sity of particle-hole states at the Fermi surface.

3) Correlations: Low-energy neutrinos couple mainly to
the long-wavelength fluctuations of the strongly in-
teracting nuclear plasma. Repulsive particle-hole in-
teractions and Coulomb interactions generally result
in a suppression of the weak-interaction rates since
they increase the energy cost associated with such
fluctuations. Interactions can also result in low-lying
collective excitations to which neutrinos can couple.
This acts to increase the weak-interaction rates at
low energy. Both effects may be calculated using the
Random-Phase Approximation (RPA), in which ring
diagrams are summed to all orders. Model calcula-
tions [2,5,4,6,9,11,13–15] indicate that at high den-
sity the neutrino cross-sections are suppressed relative
to the case in which these effects are ignored. In ad-
dition, these correlations enhance the average energy
transfer in neutrino-nucleon collisions. Improvements
in determining the many-body dynamic form factor
and assessing the role of particle-particle interactions
in dense matter at finite temperature are necessary be-
fore the full effects of many-body correlations may be
ascertained.

The relative importance of the various effects described
above on neutrino transport is only beginning to be stud-
ied systematically. As a first step, we will focus on effects
due to modifications 1) through 3) above. To see how this
is accomplished, we start with a general expression for the
differential cross-section [6,13]:

1
V

d3σ

d2Ω3dE3
=− G2

F

128π2

E3

E1

[
1−exp

(−q0−(µ2−µ4)
T

)]−1

×(1− f3(E3))Im(LαβΠR
αβ) , (1)

where the incoming-neutrino energy is E1 and the
outgoing-electron energy is E3. The factor [1 −
exp((−q0 − µ2 + µ4)/T )]−1 maintains detailed bal-
ance, for particles labeled “2” and “4” which are in
thermal equilibrium at temperature T and in chemical
equilibrium with chemical potentials µ2 and µ4, respec-
tively. The final-state blocking of the outgoing lepton is
accounted for by the Pauli-blocking factor (1 − f3(E3)).
The lepton tensor Lαβ is given by

Lαβ=8[2kαkβ+(k·q)gαβ−(kαqβ+qαkβ)∓iεαβµνkµqν ]. (2)

The target particle retarded polarization tensor is

ImΠR
αβ = tanh

(
q0 + (µ2 − µ4)

2T

)
Im Παβ , (3)

where Παβ is the time ordered or causal polarization and
is given by

Fig. 1. Neutrino mean free paths in relativistic RPA.

Παβ = −i

∫
d4p

(2π)4
Tr [T (G2(p)JαG4(p+ q)Jβ)] . (4)

Above, kµ is the incoming-neutrino four-momentum and
qµ is the four-momentum transfer. In writing the lepton
tensor, we have neglected the electron mass term, since
typical electron energies are of the order of a few hundred
MeV. The Greens’ functions Gi(p) (the index i labels
particle species) describe the propagation of baryons at
finite density and temperature. The current operator Jµ
is γµ for the vector current and γµγ5 for the axial current.
Effects of strong and electromagnetic correlations may be
calculated by utilizing the RPA polarization tensor

ΠRPA = Π +ΠRPADΠ , (5)

where D denotes the interaction matrix, in eq. (1)
(see [13] for more details).

Neutrino mean free paths calculated in relativistic
RPA are shown in fig. 1. The model employed incorporates
interactions via σ-ω-ρ exchange as in Walecka model. It
is supplemented by pion exchange and a repulsive contact
term whose strength is parameterized by the constant g′
to account for short range spin-isospin correlations. The
results indicate that RPA corrections are most significant
in the spin-isospin channel and that low-temperature
correlation can suppress the cross-section by as much as
a factor of 2-3. Quantitative aspects of the suppression
depends on the details of the model employed, nonetheless
we note that most model studies thus far indicate similar
suppression factors.
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3 Neutrino interactions in novel phases at
high density

In this section we explore how phase transitions impact
the weak-interaction rates. Novel phases of baryonic mat-
ter are expected to occur at densities accessible in neu-
tron stars. These new phases include pion condensation,
kaon condensation, hyperons and quark matter. An un-
derstanding of how these phases might influence neutrino
propagation and emission is necessary if we are to inquire
if these phase transitions even occur in side neutron stars.
We consider three specific examples of phase transitions:
i) generic first-order transitions; 2) superconducting quark
matter and 3) Color-Flavor–Locked superconducting
quark matter to explore and illustrate the modification of
neutrino rates in the novel high-density phases of matter.

3.1 Inhomogeneous phases: effects of first-order
transitions

First-order phase transitions in neutron stars can re-
sult in the formation of heterogeneous phases in which
a positively charged nuclear phase coexists with a nega-
tively charged new phase which is favored at higher densi-
ties [17]. This is a generic feature of first-order transitions
in matter with two conserved charges. In the neutron star
context these correspond to baryon number and electric
charge. Reddy, Bertsch and Prakash [18] have studied the
effects of inhomogeneous phases on ν-matter interactions.
Based on simple estimates of the surface tension between
nuclear matter and the exotic phase, typical droplet sizes
range from 5 to 15 fm [19], and inter-droplet spacings
range up to several times larger. The propagation of neu-
trinos whose wavelength is greater than the typical droplet
size and less than the inter-droplet spacing, i.e., 2 MeV ≤
Eν ≤ 40 MeV, will be greatly affected by the heterogene-
ity of the mixed phase, as a consequence of the coherent
scattering of neutrinos from the matter in the droplet.

The Lagrangian that describes the neutral current cou-
pling of neutrinos to the droplet is

LW =
GF

2
√
2

ν̄γµ(1− γ5)ν Jµ
D , (6)

where Jµ
D is the neutral current carried by the droplet

and GF = 1.166 × 10−5 GeV−2 is the Fermi weak-
coupling constant. For non-relativistic droplets, Jµ

D =
ρW (x)δµ0 has only a time-like component. Here, ρW (x)
is the excess weak charge density in the droplet. The
total weak charge enclosed in a droplet of radius rd is
NW =

∫ rd

0
d3xρW (x) and the form factor is F (q) =

(1/NW )
∫ rd

0
d3xρW (x) sin qx/qx. The differential cross-

section for neutrinos scattering from an isolated droplet
is then

dσ
d cos θ

=
E2
ν

16π
G2
FN

2
W (1 + cos θ)F 2(q) . (7)

In the above equation, Eν is the neutrino energy and θ
is the scattering angle. Since the droplets are massive, we

consider only elastic scattering for which the magnitude
of the momentum transfer is q =

√
2Eν(1− cos θ).

We must embed the droplets into the medium to evalu-
ate the neutrino transport parameters. The droplet radius
rd and the inter-droplet spacing are determined by the in-
terplay of surface and Coulomb energies. In the Wigner-
Seitz approximation, the cell radius is RW = (3/4πND)1/3
where the droplet density is ND. Multiple droplet scatter-
ing cannot be neglected for Eν � 1/RW . The effects of
other droplets is to cancel scattering in the forward di-
rection, because the interference is destructive except at
exactly zero degrees, where it produces a change in the in-
dex of refraction of the medium. These effects are usually
incorporated by multiplying the differential cross-section,
eq. (7), by the static form factor of the medium. The static
form factor, defined in terms of the radial distribution
function of the droplets, g(r), is

S(q) = 1 +ND

∫
d3r exp iq · r (g(r)− 1) . (8)

The droplet correlations, which determine g(r), arise due
to the Coulomb force and are measured in terms of the
dimensionless Coulomb number Γ = Z2e2/(8πRW kT ).
Due to the long-range character of the Coulomb force,
the role of screening and the finite droplet size, g(r) can-
not be computed analytically. We use a simple ansatz
for the radial distribution function g(r < RW ) = 0 and
g(r > RW ) = 1. The simple ansatz for g(r) is equivalent
to subtracting, from the weak charge density ρW , a uni-
form density which has the same total weak charge NW

as the matter in the Wigner-Seitz cell. Thus, effects due
to S(q) may be incorporated by replacing the form factor
F (q) by

F (q)→ F̃ (q)=F (q)− 3
sin qRW − (qRW ) cos qRW

(qRW )3
. (9)

The neutrino-droplet differential cross-section per unit
volume then follows:

1
V

dσ
d cos θ

= ND
E2
ν

16π
G2
FN

2
W (1 + cos θ)F̃ 2(q) . (10)

Note that even for small droplet density ND, the factor
N2
W acts to enhance the droplet scattering. To quantify

the importance of droplets as a source of opacity, we com-
pare with the standard scenario in which matter is uni-
form and composed of neutrons. The dominant source of
opacity is then due to scattering from thermal fluctuations
and

1
V

dσ
d cos θ

=
G2
F

8π
(
c2V (1 + cos θ) + (3− cos θ)c2A

)
E2
ν

×3
2

nn

[
kBT

EFn

]
, (11)

where cV and cA are, respectively, the vector and axial
coupling constants of the neutron, nn is the neutron num-
ber density, EFn is the neutron Fermi energy and T is the
matter temperature [4].
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Fig. 2. Neutrino mean free paths as a function of neutrino
energy. Solid lines are for matter in a mixed phase contain-
ing kaons (upper panel) and quarks (lower panel), and dashed
curves are for uniform matter.

The transport cross-sections that are employed in
studying the diffusive transport of neutrinos in the core
of a neutron star are differential cross-sections weighted
by the angular factor (1− cos θ). The transport mean free
path λ(Eν) for a given neutrino energy Eν is given by

1
λ(Eν)

=
σT (Eν)

V
=

∫
d cos θ(1−cos θ)

[
1
V

dσ
d cos θ

]
. (12)

Models of first-order phase transitions in dense matter
provide the weak charge and form factors of the droplets
and permit the evaluation of ν-droplet scattering contri-
butions to the opacity of the mixed phase. We consider
two models, namely the first-order kaon condensate and
the quark-hadron phase transition; the neutrino mean free
paths in the mixed phase are shown in the upper and lower
panels of fig. 2, respectively. The results are shown for the
indicated values of the baryon density nB and tempera-
ture T where the model predicts a mixed phase exists.

The kaon droplets are characterized by radii rd ∼ 7 fm
and inter-droplet spacings RW ∼ 20 fm, and enclose a
net weak vector charge NW ∼ 700. The quark droplets
are characterized by rd ∼ 5 fm and RW ∼ 11 fm, and
an enclosed weak charge NW ∼ 850. For comparison, the
neutrino mean free paths in uniform neutron matter at
the same nB and T are also shown. It is apparent that
there is a large coherent scattering-induced reduction in
the mean free path for the typical energy Eν ∼ πT . At
much lower energies, the inter-droplet correlations tend
to screen the weak charge of the droplet, and at higher
energies the coherence is attenuated by the droplet form
factor.

The large reduction in neutrino mean free path found
here implies that the mixed phase will cool significantly
slower than homogeneous matter. Consequently, the ob-
servable neutrino luminosity at late times might be af-
fected as it is driven by the transport of energy from the
deep interior.

3.2 Effects of quark superconductivity

Recent theoretical works [20,21] suggest that quarks form
Cooper pairs in medium, a natural consequence of at-
tractive interactions destabilizing the Fermi surface. Al-
though the idea of quark pairing in dense matter is not
new [20], it has recently seen renewed interest in the con-
text of the phase diagram of QCD [21]. Model calculations,
mostly based on four-quark effective interactions, predict
the restoration of spontaneously broken chiral symmetry
through the onset of color superconductivity at low tem-
peratures. They predict an energy gap of ∆ ∼ 100 MeV
for a typical quark chemical potential of µq ∼ 400 MeV.
As in BCS theory, the gap will weaken for T > 0, and
at some critical temperature Tc there is a (second-order)
transition to a “standard” quark-gluon plasma. During
cooling from an initial temperature in excess of Tc, the
formation of a gap in the fermionic excitation spectrum
in quark matter will influence various transport properties
of the system. Carter and Reddy have studied its influence
on the transport of neutrinos [22].

The differential neutrino scattering cross-section per
unit volume in an infinite and homogeneous system of rel-
ativistic fermions as calculated in linear-response theory
is given by eq. (1). The medium is characterized by the
quark polarization tensor Παβ . In the case of free quarks,
each flavor contributes a term of the form

Παβ(q) = −iTrc
∫

d4p

(2π)4
Tr [S0(p)ΓαS0(p+ q)Γβ ] , (13)

where S0(p) is the free quark propagator at finite chemical
potential and temperature. The outer trace is over color
and simplifies to a Nc = 3 degeneracy. The inner trace is
over spin, and the Γα are the neutrino-quark vertex func-
tions which determine the spin channel. Specifically, the
vector polarization is computed by choosing (Γα, Γβ) =
(γα, γβ). The axial and mixed vector-axial polarizations
are similarly obtained from (Γα, Γβ) = (γαγ5, γβγ5) and
(Γα, Γβ) = (γα, γβγ5), respectively.
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The free quark propagators in eq. (13) are naturally
modified in a superconducting medium. As first pointed
out by Bardeen, Cooper, and Schrieffer several decades
ago, the quasi-particle dispersion relation is modified due
to the presence of a gap in the excitation spectrum.
In calculating these effects, we will consider the simpli-
fied case of QCD with two quark flavors which obey
SU(2)L × SU(2)R flavor symmetry, given that the light
u- and d-quarks dominate low-energy phenomena. Fur-
thermore, we will assume that, through some unspecified
effective interactions, quarks pair in a manner analogous
to the BCS mechanism [23]. The relevant consequences
of this are the restoration of chiral symmetry (hence all
quarks are approximately massless) and the existence of
an energy gap at zero temperature, ∆0, with approximate
temperature dependence,

∆(T ) = ∆0

√
1−

(
T

Tc

)2

. (14)

The critical temperature Tc 
 0.57∆0 is likewise taken
from BCS theory; this relation has been shown to hold for
perturbative QCD and is thus a reasonable assumption
for non-perturbative physics. Since the scalar diquark (in
the 3̄-color representation) appears to always be the most
attractive channel, we consider the anomalous (or Gorkov)
propagator [24]

F (p)abfg = 〈qTfa(p)Cγ5qgb(−p)〉

= −iεab3εfg∆

(
Λ+(p)
p2
o − ξ2

p

+
Λ−(p)
p2
o − ξ̄2

p

)
γ5C . (15)

Here, a, b are color indices, f, g are flavor indices, εabc is
the usual anti-symmetric tensor and we have convention-
ally chosen 3 to be the condensate color. This propagator
is also anti-symmetric in flavor and spin, with C = −iγ0γ2

being the charge conjugation operator. The color bias of
the condensate forces a splitting of the normal quark prop-
agator into colors transverse and parallel to the diquark.
Quarks of color 3, parallel to the condensate in color space,
will be unaffected and propagate freely, with

S0(p)
bg
af = iδbaδ

g
f

(
Λ+(p)
p2
o − E2

p

+
Λ−(p)
p2
o − Ē2

p

)
(pµγµ − µγ0) .

(16)
This is written in terms of the particle and anti-particle
projection operators Λ+(p) and Λ−(p), respectively, where
Λ±(p) = (1±γ0γ · p̂)/2. The excitation energies are simply
Ep = |p| − µ for quarks and Ep = |p|+ µ for anti-quarks.

On the other hand, transverse quark colors 1 and 2
participate in the diquark and thus their quasi-particle
propagators are given as

S(p)bgaf = iδbaδ
g
f

(
Λ+(p)
p2
o − ξ2

p

+
Λ−(p)
p2
o − ξ̄2

p

)
(pµγµ − µγ0) .

(17)
The quasi-particle energy is ξp =

√
(|p| − µ)2 +∆2, and

for the anti-particle ξ̄p =
√
(|p|+ µ)2 +∆2.

Fig. 3. Upper panel: neutrino mean free path as a function
of neutrino energy Eν . Lower panel: neutrino mean free path
for Eν = πT as a function of ∆/T . These results are virtually
independent of temperature for T � 50 MeV.

The appearance of an anomalous propagator in the su-
perconducting phase indicates that the polarization ten-
sor gets contributions from both the normal quasi-particle
propagators, eq. (17), and the anomalous propagator,
eq. (15). Thus, to order G2

F , eq. (13) is replaced with
the two contributions corresponding to the normal and
anomalous diagrams and is given by

Παβ(q) = −i

∫
d4p

(2π)4
{Tr [S0(p)ΓαS0(p+ q)Γβ ]

+ 2Tr [S(p)ΓαS(p+ q)Γβ ]

+ 2Tr [F (p)ΓαF̄ (p+ q)Γβ ]
}

. (18)

The remaining trace is over spin, as the color trace has
been performed.

For neutrino scattering we must consider vector, axial,
and mixed vector-axial channels, all summed over flavors.
The full polarization, to be used in evaluating eq. (1), may
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be written as

Παβ=
∑
f

[
(Cf

V )
2ΠV

αβ+(Cf
A)

2ΠA
αβ−2Cf

V Cf
AΠ

V A
αβ

]
. (19)

The coupling constants for up-quarks are Cu
V = 1

2 −
4
3 sin

2 θW and Cu
A = 1

2 , and for down-quarks, Cd
V =

− 1
2 + 2

3 sin
2 θW and Cd

A = − 1
2 , where sin2 θW 
 0.23 is

the Weinberg angle.
The differential cross-section, eq. (1) and the total

cross-section are obtained by integrating over all neutrino
energy transfers and angles. Results for the neutrino mean
free path, λ = V/σ, are shown in fig. 3 as a function of
incoming-neutrino energy Eν (for ambient conditions of
µq = 400 MeV and T = 30 MeV). They show the same en-
ergy dependence found previously for free relativistic and
degenerate fermionic matter [12]; λ ∝ 1/E2

ν for Eν � T
and λ ∝ 1/Eν for Eν � T . The results indicate that this
energy dependence is not modified by the presence of a
gap when ∆ ∼ T . Thus, the primary effect of the super-
conducting phase is a much larger mean free path. This
is consistent with the suppression found in the vector-
longitudinal response function, which dominates the po-
larization sum, eq. (19), at q0 < q.

3.3 Neutrino interactions with Goldstone bosons

The discussion in the preceding section assumed that there
were no low-energy collective excitations to which the neu-
trinos could couple. This is true in the 2-flavor super-
conducting phase of quark matter. For three flavors and
when the strange-quark mass is negligible compared to
the chemical potential, the ground state is characterized
by pairing that involves all nine quarks in a pattern that
locks flavor and color [25]. Naively, we can expect signifi-
cant differences in the weak-interaction rates between the
normal and the CFL phases of quark matter since the
latter is characterized by a large gap in the quark exci-
tation spectrum. However, diquark condensation in the
CFL phase breaks both baryon number and chiral sym-
metries. The Goldstone bosons that arise as consequence
introduce a low-lying collective excitations to the other-
wise rigid state. Thus, unlike in the normal phase where
quark excitations near the Fermi surface provide the dom-
inant contribution to the weak-interaction rates, in the
CFL phase, it is the dynamics of the low-energy collective
states —the Goldstone bosons, that are relevant. Neutrino
interactions with Goldstone bosons have been recently in-
vestigated by Jaikumar et al. [26] and Reddy et al. [27].

There are several articles that describe in detail the
effective theory for Goldstone bosons in Color-Flavor–
Locked quark matter [28]. We will not review them
here except to note that it is possible to parameterize
low-energy excitations about the SU(3) symmetric CFL
ground state in terms of the two fields B = H/(

√
24fH)

and Σ = e2i(π/fπ+η′/fA), representing the Goldstone
bosons of broken baryon number H, and of broken chi-
ral symmetry, the pseudo-scalar octet π, and the pseudo-
Goldstone boson η′, arising from broken approximate
U(1)A symmetry.

The massless Goldstone boson associated with spon-
taneous breaking of U(1)B couples to the weak neutral
current. This is because the weak isospin current contains
a flavor singlet component. Although neutrinos couple to
the flavor octet of Goldstone bosons, it turns out that
the neutrino mean free path is mostly determined by pro-
cesses involving the massless-baryon number Goldstone
mode [27]. For this reason, we restrict our attention to
these processes. The amplitude for the process involving
the U(1)B Goldstone boson H and the neutrino neutral
current is given by

AHνν̄ =
4√
3

GF fH p̃µ jµZ , (20)

where p̃µ = (E, v2p) is the modified four-momentum of
the Goldstone boson and v = 1/

√
3 is the velocity of the

Goldstone boson. The decay constant for the U(1)B Gold-
stone boson has also been computed in earlier work [28]
and is given by f2

H = 3µ2/(8π2).
The neutrino mean free path due to the reaction ν →

Hν can be calculated analytically and is given by

1
λν→Hν(Eν)

=
256
45π

[
v(1− v)2(1 + v

4 )
(1 + v)2

]
G2
F f2

H E3
ν .

(21)
Neutrinos of all energies can absorb a thermal meson

and scatter into either a final-state neutrino by neutral
current processes like ν + H → ν and ν + π0 → ν or
via the charged current reaction into a final-state electron
by the process νe + π− → e−. These processes are tem-
perature dependent as they are proportional to the den-
sity of mesons in the initial state. Mean free paths due to
these processes, which we collectively refer to as Čerenkov
absorption can be computed. Reactions involving the H-
boson dominate over other Čerenkov absorption processes
due to their larger population and stronger coupling to the
neutral current. For this case, we find the neutrino mean
free path is given by

1
λνH→ν(Eν)

=
128
3π

[
v (1 + v)2

(1− v)

]

×
[
g2(γ) +

2v
(1− v)

g3(γ)− (1 + v)
(1− v)

g4(γ)
]

×G2
F f2

H E3
ν , (22)

where γ = 2vEν/(1 − v)T and the integrals gn(γ) are
defined by the relation

gn(γ) =
∫ 1

0

dx
xn

exp (γx)− 1
. (23)

In contrast to processes involving the emission or ab-
sorption of mesons by neutrinos, the usual scattering pro-
cess involves the coupling of the neutrino current to two
mesons. As noted earlier, the amplitude for these processes
vanishes for the H-meson and is suppressed by the fac-
tor p/fπ, where p is the meson momentum for the fla-
vor octet mesons. Figure 4 shows the contribution of all
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Fig. 4. Neutrino mean free path in a CFL meson plasma as a
function of temperature. The neutrino energy Eν = πT and is
characteristic of a thermal neutrino.

Goldstone boson-neutrino processes contributing to the
neutrino mean free path in the CFL phase including the
dominant contribution arising from processes involving
the massless mode.

It is interesting to note that the existence of one
massless mode compensates for the large gap in the
particle-hole excitations spectrum. The contrast between
the findings of the previous section, wherein no low-
energy Goldstone modes coupled to the neutrino, to those
presented here is striking. The mean free path in the
CFL phase is surprisingly similar to that in normal, non-
superconducting, quark phase.

4 Discussion

We have attempted to provide a glimpse into the type
of nuclear many-body calculations necessary to compute
the response of dense matter to neutrinos. The methods
employed and the fundamental questions being addressed
have many similarities to those addressed in electron-
nucleus scattering described at this meeting. While the
latter approach probes the quark degrees of freedom in-
side nuclei by increasing the electron energy, the astro-
physical setting allows us to probe similar questions using
low-energy neutrinos.

Calculations of neutrino mean free paths and emission
rates in dense matter remain a challenging problem to the
nuclear many-body theorist. Several fundamental issues
relating to the long-wavelength properties of the dense
nucleonic matter and the role of phase transitions in neu-
tron stars can be explored by employing these calculations
in astrophysical simulations of neutron star phenomena.
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M. Buballa, W. Nörenberg, J. Wambach, A. Wirzba (GSI,
Darmstadt, 1997) p. 187.

12. S. Reddy, M. Prakash, J.M. Lattimer, Phys. Rev. D 58,
013009 (1998).

13. S. Reddy, M. Prakash, J.M. Lattimer, J.A. Pons, Phys.
Rev. C 59, 2888 (1999).

14. A. Burrows, R.F. Sawyer, Phys. Rev. C 58, 554 (1998).
15. A. Burrows, R.F. Sawyer, Phys. Rev. C 59, 510 (1999).
16. C. Hanhart, D.R. Phillips, S. Reddy, Phys. Lett. B 499, 9

(2001).
17. N.K. Glendenning, Phys. Rev. D 46 4161 (1992).
18. S. Reddy, G.F. Bertsch, M. Prakash, Phys. Lett. B 475, 1

(2000).
19. M. Christiansen, N.K. Glendenning, J. Schaffner-Bielich,

Phys. Rev. C 62, 025804 (2000); T. Norsen, S. Reddy,
Phys. Rev. C 63, 065804 (2001).

20. B.C. Barrois, Nucl. Phys. B 129, 390 (1977); S.C.
Frautschi, in Proceedings of the Workshop on Hadronic
Matter at Extreme Energy Density, Erice, Italy, 1978,
edited by N. Cabibbo, L. Sertorio (Plenum Press, New
York, 1980).

21. M. Alford, K. Rajagopal, F. Wilczek, Phys. Lett. B 422,
247 (1998); Nucl. Phys. B 357, 443 (1999); 558, 219
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